
Web Content Management
System Powered by Ajax

Carl-Ola Boketoft

April 8, 2010
Master’s Thesis in Computing Science, 30 credits

Supervisor at CS-UmU: H̊akan Gulliksson
Examiner: Per Lindström

Ume̊a University
Department of Computing Science

SE-901 87 UMEÅ
SWEDEN

Abstract

This master thesis is about the development of a web site for three restaurants in South
Korea. For the maintenance and updating of the contents of the web site a CMS (Content
Management System) was developed.

The major part of the work was conducted in South Korea and in close collaboration
with the owners of the restaurants in order to improve communication possibilities and to
be able to gather materials for the project.

A theoretical study was conducted to acquire knowledge about the web development
technique Ajax, both from a programming view and how to use it for improving usability
of the web site functions.

From the results of the theoretical study, methods were chosen and applied into a detailed
conceptual model of the web site. This model was used as a base for the implementation of
the web site pages and content management functions.

The resulting implementation of the web site is based on a common structure for the
different pages, with contents available in both English and Korean. The updating of the
contents is done by Ajax enhanced functions in the CMS, which also contains functions for
image uploading, text editing, and layout management.

ii

Contents

1 Introduction 1

1.1 Task of the Project . 1

1.2 The Employing Company . 2

1.3 Sections of the Report . 2

2 Problem Description 5

2.1 Background of the Project . 5

2.2 Problem Statement . 5

2.3 Purposes . 6

3 Methods 7

3.1 Development Process . 7

3.2 Preparations . 8

3.2.1 Theoretical Preparations . 8

3.2.2 Practical Preparations . 8

3.3 Tools . 8

4 Theoretical Study 11

4.1 Introduction . 11

4.1.1 Model of Traditional Web Applications 12

4.1.2 Rich Internet Applications . 12

4.2 Ajax . 12

4.2.1 W3C Recommendations and Ajax . 14

4.2.2 Ajax Building Blocks . 14

4.2.3 HTML . 14

4.2.4 CSS . 15

4.2.5 XML . 16

4.2.6 XHTML . 17

4.2.7 JavaScript . 17

4.2.8 XMLHttpRequest . 18

4.2.9 Ajax Engine Example . 18

iii

iv CONTENTS

4.2.10 DOM . 21

4.2.11 Technical Limitations of Ajax . 22

4.3 Other RIA Techniques . 23

4.3.1 Adobe Flash/Flex . 23

4.3.2 Microsoft Silverlight . 24

4.3.3 JavaFX . 24

4.4 Usability and Ajax . 24

4.4.1 Nielsen’s Heuristics . 25

4.4.2 Tognazzini’s First Principles on Interaction Design 26

5 Accomplishment 29

5.1 Time Plan . 29

5.2 Developing the design . 30

5.2.1 Concept models . 30

5.3 Implementation . 39

5.3.1 Administrator Pages . 40

5.3.2 Storing the Data . 40

5.3.3 Rendering the Contents . 41

5.3.4 Separating Contents for Different Restaurants 42

5.3.5 Server and Browser Side Functions . 42

5.3.6 Image Uploading Issue . 42

5.3.7 Web Site Page Types . 43

5.3.8 Dynamic Page Contents . 43

5.4 User Testing . 44

5.5 Photography . 44

6 Results 47

6.1 Pages of the Web Site . 47

6.2 Administrator Pages . 51

6.3 CMS Functions . 54

6.3.1 Image Uploading . 55

6.3.2 Text Editing . 57

6.3.3 HTML Formatting Within Text Boxes 58

6.3.4 Working with Entries . 59

7 Conclusions 63

7.1 Working in South Korea . 63

7.2 Learning Process . 63

7.3 Design and Implementation . 64

7.4 Goals and Purposes . 64

7.5 Limitations . 64

7.6 Future work . 65

CONTENTS v

8 Acknowledgements 67

References 69

A Requirements document 71

B Time Plan 75

vi CONTENTS

Chapter 1

Introduction

This report describes the work to develop a web site for three restaurants, located in the
South Korean city Gongju, and a CMS (Content Management System) for the maintenance
and updating of its contents in a user friendly way.

1.1 Task of the Project

The main task of the project was to create web pages for each of the three restaurants and
a system that provides an easy way for updating all the texts and pictures on the pages. At
the initiation of the project it was planned that the contents of the web site should include
the restaurants’ menus, directions to the restaurants, pictures related to the restaurants,
and welcome messages from the owner.

The focus of the research and technical study of the project was how to use Ajax en-
hanced functions to improve the usability of the CMS interface on the web site. Ajax is the
name for a web site programming method that use different programming languages such
as HTML, JavaScript, and XML to extend the functionality of traditional web sites. An
integral part of the Ajax programming method is a JavaScript object called XMLHttpRe-
quest, which can be used to update specific contents of a web page without the necessity of
reloading the whole page.

The city of Gongju is historically very important for Korea, as a former capital of one of
three ancient kingdoms in the country, and has several ancient landmarks that are popular
tourist attractions. In relevance to this, the owner of the restaurants wanted the web site to
be available in both English and Korean in order to extend their marketing to reach outside
of the local audience, and to attract the attention of both Korean as well as foreign tourists.
With this web site the restaurants are for the first time presented at the web.

Since none of the restaurants have staff that are experienced in working actively with the
Internet before, it was important for the owner that the maintenance functions of the web
site was made to be easy to use. To satisfy the need of a web site that is fully maintained
without any programmer or web designer inside the company, much effort has been laid
on developing the functions and design of the web site to be intuitive and easy to use. A
theoretical study was conducted for the project, about how Ajax functions can be used for
improving usability aspects, and the learnings from the study were playing a big part during
the implementation of the CMS functions on the web site.

1

2 Chapter 1. Introduction

In an early interview with the restaurant owner, the structure, basic functions, and
main contents of the web site were agreed upon. The interview then served as a base for the
creation of a requirements document that was produced to describe all of the requirements
for the web site. The requirements document can be seen in Appendix A. The integral parts
of the development process of the web site were to decide the range of contents, designing
the aesthetic and functional parts, implementing the code, and to take the photographs that
were going to be featured on the pages. The owner took on the task of producing the texts
to include on the pages of the web site.

1.2 The Employing Company

The employing company for the project runs three restaurants which are all located in
buildings owned by the company. The first restaurant that was opened is called “Cape
Town”, a reference to the South African city with the same name. Cape Town was opened
in 2000, and they are serving western style food such as various pasta dishes, steak based
meals, and different types of coffee drinks. The restaurant has three floors, and the tables
on the third floor have a great view out over the Gongju river and surrounding mountains.
The restaurant “Ye-Ga” was the second restaurant opened by the company, in 2002, and
the name of the restaurant means “The Ye family”, which is the family of the owner. The
restaurant is located in a building right in front of Cape Town, and it consists of a three
story building with seating space for about 300 guests. Ye-Ga serves a selection of the
most popular Korean dishes. The third, and youngest, restaurant was opened in 2004 and
is called “Ye-Ga Chon”. The restaurant is located in a one story building by the Gongju
river, a couple of kilometers from the other two restaurants. Ye-Ga Chon serves different
types of Korean food, including dishes based on chicken, duck, and dog meat. Close to the
restaurant is the a beautiful and historically very important fortress called “Gonsanseong
fortress”.

1.3 Sections of the Report

The report is divided into the following chapters:

Chapter 1 - Introduction
Introduction of the report, describing the task of the project and the employing company.

Chapter 2 - Problem Description
Describes the background of the project, the problem statement, and the purposes of the
project from different perspectives.

Chapter 3 - Methods
Describes the development process for the project, which preparations that were made be-
fore the development, and which tools were used during the project.

Chapter 4 - Theoretical Study
Contains a theoretical study of the web developing technique Ajax and the different web
programming languages it comprises. Then there is a study of different usability aspects
related to web interfaces, and finally it is explored how Ajax can be used for such interfaces

1.3. Sections of the Report 3

with the purpose of enhancing usability.

Chapter 5 - Accomplishment
Describes the different steps of the development process of the project. The chapter contains
sections about the time plan for the project, the development of the aesthetic and functional
design, the implementation of the code, and the user testing during the project.

Chapter 6 - Results
Presents the finished web site and describes its implemented functions. Contains screen
shots and explanatory image sequences.

Chapter 7 - Conclusions
Conclusions that can be made from the project.

4 Chapter 1. Introduction

Chapter 2

Problem Description

This chapter describes how the idea for the project came up, the forming and description of
a problem description, and the purposes of the project both from my perspective and from
the perspective of the employing company.

2.1 Background of the Project

Some years before the project, I had been to South Korea for the first time to visit the Ye
family due to personal relationships. During my stay there I was a frequent visitor to the
restaurants and I became fascinated with the immense popularity they enjoyed in the city.
The first idea for the project arose as I was discussing with the family why the restaurants
were not presented to a wider, possibly international, market of tourists and out of town
visitors. A discussion came up about the importance of using the Internet as a channel of
spreading information to a vast range of potential restaurant customers. The restaurant
owner had earlier had thoughts about outsourcing the development of a simple web site for
the restaurants to a Korean company that specializes in web development.

Some time after our discussion about presenting the restaurants on the Internet, I got
the idea of me developing a web site for the restaurants as my master thesis. A proposition
for the project was formed and presented to the restaurant owner, who became interested
in the idea. The proposition was accepted and it was decided that the development of the
web site would take place on location in South Korea, in close collaboration with the owner.

2.2 Problem Statement

Since the company did not have any employee with the competence to create a web site for
the restaurants, and there was no set plan to have the project executed by another company,
it suited the owner fine that the web site would be developed as my master thesis. It was
agreed upon that the head responsibility for the project was laid upon me and a framework
for the project was discussed and set in the initiation process of the development. During an
interview with the owner, a list of key elements and contents for the web site was presented
and then laid as a foundation for the creation of a requirements document for the project.
A selection of requirements for the web site, from the requirements document as available
in Appendix A, are presented below:

5

6 Chapter 2. Problem Description

– There shall be a welcoming start page for each of the three restaurants, containing a
welcome message written by the owner.

– There shall be a page with information about the restaurant, for each of the three
restaurants.

– There shall be a page with the restaurant’s menu, for each of the three restaurants.

– There shall be a page with directions to the restaurant and pictures from the area
surrounding the restaurant, for each of the three restaurants.

– All relevant contents on the web page shall be available in both Korean and English.

– The web site shall be able to view from a guest interface and from an administrator
interface.

– All content data on the web site shall be possible to update by an administrator via
a CMS in the administrator interface.

– The CMS functions in the administrator interface shall appear as a layer of function-
ality for updating the contents, on top of the guest interface.

– Usability principles and heuristics shall be in focus when when designing the guest
interface and the administrator interface for the web site.

2.3 Purposes

The main purpose of the project, from my view, was to get insights and experience from
carrying out an international project, as well as getting an increased knowledge about how
to design a web site interface with functionality based on Ajax techniques from a perspective
of usability principles and heuristics.

The purpose for the employing company was mainly to expand the availability of information
about the restaurants to people inside and outside of the city borders. With the web site
available in both Korean and English it would become possible to reach a larger potential
customer group, compared to only having information in Korean. Having an easy to use
CMS for updating and maintaining the contents of the web site was essential since none of
the employees within the company had previous experience or competence to be in charge
of advanced web development or programming.

Chapter 3

Methods

The first step of the project was to come up with the main ideas and concepts for the web
site, and then to present a specification of the plans to the involved persons. This was very
important so that everyone would be in agreement about the framework for the project.
Then a plan for the continuing development process and methods for conducting the work
with the project was prepared.

The following sections of this chapter describes the development process that was followed
during the work with project, which practical and theoretical preparations were made before
the development, and which tools were used during the development.

3.1 Development Process

During the project, a development process described in Soren Lauesen’s book “Software
Requirements”[10] was used to get a good work flow and to make sure that the requirements
and goals for the project were going to be fulfilled. The different steps of the development
process that were taken in the project are described below:

Project inception - Initiate the development of the product. Stakeholders and goals are
identified.

Elicitation - Define development goals together with the stakeholders. Commence the elic-
itation of requirements.

Writing the requirements - Write down and finalize the requirements in a document
that specifies the requirements.

Design and programming - Development of the product, according to the requirements
document.

Acceptance test and delivery - The product is installed and tested by the customer and
developer to confirm that it satisfies the goals and works as described in the requirements
document.

7

8 Chapter 3. Methods

3.2 Preparations

There were substantial theoretical and practical preparations for the project, before the
development of the product commenced. When the project proposition had been approved
by the owner of the restaurants, it was possible to begin with the preparations for the coming
development of the web site.

3.2.1 Theoretical Preparations

After it had been decided that the focus was going to be on Ajax enhanced web site de-
velopment, the theoretical study about the different constituents of the Ajax technique was
conducted. An extensive study including the reading of articles, learning about current web
site developing trends, and exploring existing web sites, took place. Then the essential web
developing languages and methods encompassed within the Ajax developing technique, in-
cluding HTML, XML, DOM, and JavaScript, were explored and described in the theoretical
study in Chapter 4.

3.2.2 Practical Preparations

As the project was going to be performed on location in South Korea, a big part of the
practical preparations were to organize the trip there and getting settled in an apartment
to conduct the work from. While getting acclimatized and organizing for the project, there
were many opportunities to visit the restaurants, take photos of things related to the restau-
rants, trying out the food, and discussing different aspects of the project with the owner.
Another important part of the preparations was to learn how to use the different program-
ming languages that were explored in the theoretical study. I had a gained significant
level of competence in PHP programming from earlier projects, but I was unfamiliar with
JavaScript, XML, and DOM.

Apart from the preparations that were performed in direct relation to the project, I had
already taken some photos of the restaurants, food, and the surrounding area during my
previous visit to South Korea some years ago. Some of those photos were later presented
on the web site.

3.3 Tools

Many different tools and programs were used during the development of the product. The
following list are some of the most frequently used:

Adobe Photoshop - Image processing software that was used for photo editing, refining
concept models and create graphics for the web pages.

Adobe Dreamweaver - Web development software that was used for the coding of the
web site. The program is based on both coding and WYSIWYG (What You See Is What
You Get) development.

Adobe Illustrator - Vector based graphics software that was used for the creation of con-
cept models, restaurant logos, and other graphics for the web pages.

3.3. Tools 9

WAMP - A collection of programs that were used to set up a private web server on a com-
puter for testing the web site while coding. WAMP stands for “Windows, Apache, MySQL,
and PHP”.

Apple Safari - The web browser that the CMS interface was mainly created for. Specific
features of the browser made it suitable for the Ajax functions that were implemented.

Google Docs - Web based word processing software that was used for writing documents
related to the project. This tool was very useful since different computers were used during
the process.

Canon EOS 50D - DSLR (Digital single-lens reflex) camera that was used for taking the
photos featured on the web pages.

WinShell - LATEX editing software that was used during the writing of this report.

10 Chapter 3. Methods

Chapter 4

Theoretical Study

This chapter contains an extensive theoretical study about the web developing technique
known as Ajax, web development usability principles, and how Ajax and the usability prin-
ciples can be used together for the creation of user friendly Ajax enhanced functions on web
sites.

4.1 Introduction

Internet has evolved from being a source of read-only information and viewable home pages
into a highly interactive working place for both private persons as well as global corporations.
The original building blocks and technologies that once served as the base of the contents
presented on the World Wide Web are still present as a solid foundation for the online
materials, but developers have desperately tried to catch up with the rapid development of
new functionality and the demands from innovative web site developers. As a consequence
of the vast number of web site developers and users, new platforms and techniques to meet
the demands have appeared in many different forms.

As web sites move from being administered mainly by experienced and skilled mod-
erators and developers to interactive user forums, the importance of user friendly design
comes into focus. If a web site has advanced functionality that is supposed to be useful and
helpful to the user but is not designed in a way that it can be understood or accessible,
the functions might become obstacles instead of useful tools. With the purpose of mimick-
ing the functional behavior of desktop applications, a new breed of web applications called
RIA (Rich Internet Application) has emerged. The techniques for RIA have popped up in
many different forms and appearances that have different requirements on both hardware
and software. This has resulted in a problem of accessibility, since there are many different
types of Internet users and a great variety of software and hardware platforms by which
users can access the web.

In the first part of this theoretical study the RIA technique called Ajax, which is used for
web sites with interactive user interfaces, is explored and described. The second part of
the study explores different usability principles of web site development. The final section
describes how Ajax functionality can be used for the purpose of enhancing web site functions
from usability aspects.

11

12 Chapter 4. Theoretical Study

4.1.1 Model of Traditional Web Applications

Traditional web applications are based on a model known as the client-server model, using
HyperText Markup Language (HTML) as the main programming language. The client-
server model can be described as a communication method where there is a service requester
(the client) which displays information for the user and makes requests to a service provider
(the server) that does all the work in terms of computing, processing, and delivering data.
Web browsers are used as passive display consoles on the client side [13]. For further en-
hancement of web site functionality, a range of server side modules can be used for scripting
together with dynamic web pages with contents reflecting who is visiting the page and what
data is being passed to the page by using query strings. Considering the simplicity of this
model, traditional web development is relatively uncomplicated [4].

One fundamental aspect of the server-client model is that all processing is being handled
by the server, and that there is a necessity of constant reloading of contents to present
updates and changes to the state of the displayed web page [6]. When the user interacts
with the web application, a request is sent from the client to the server, which in turn returns
a new page that is displayed by the client. While waiting for the server to respond to the
client, the user can not do anything with the web application, but to wait. As a result of
the nature of this model there is an abundance of data being passed from the server to the
client, which increases unwanted waiting time while data is processed and page updating
occurs. HTML was not constructed to be used for rich interfaces, but for passive display of
information [4].

4.1.2 Rich Internet Applications

The defining aspect of RIA technologies is their ability to distribute to the browser the
rendering and computing abilities of the server side scripting engine that updates displayed
information and changes in the user interface on the web page [4]. RIA is used to improve
browser-based user interaction by increasing client-side working power and processing ca-
pabilities, and thus reducing the amounts of requested data to be delivered from the server
to the client [13].

There are different types of RIA applications, but a common property is that they all
have the ability to give the client side new functionality to request only specific, relevant,
parts of data during a page update and to locally modify the user interface to display the
changes [4]. Since the client has been enabled to request only relevant data from the server,
code that has not been changed in the interface will not be sent to the client more than once,
which leads to that the amounts of network traffic generated can be significantly reduced.
The client still communicates with the server, but only the updated parts of the web pages
are requested as opposed to repeatedly requesting an update of the entire page [4].

One of the main goals when creating RIA is to keep data between client and server
synchronized and to enhance the user interface action by allowing it to update in direct
response to user action [4]. The result of the introduction of this feature is that the user
gets the impression that tasks are being carried out the same instant as the very initiation
of the user request [4].

4.2 Ajax

From a number of possible RIA development techniques to focus on, the technique known
as Ajax (Asynchronous JavaScript and XML) was chosen for the project. The main reason

4.2. Ajax 13

that Ajax was chosen was to explore its innovative uses for dynamic web contents, such
as various dynamic functions at the web sites Google Maps and GMail. Another impor-
tant reason is that Ajax can be used by most modern web browsers that have support for
JavaScript, without the necessity of downloading a third party plug-in software to function.

Ajax is not a technology itself but rather a term for a combination of interrelated technologies
that together make up a powerful tool for web development. As one of the methods of RIA
web page programming, Ajax makes it possible to create web applications with improved
interactivity and responsive user interfaces [6]. The client-server model is supplemented
with a new intermediary; the Ajax engine. Instead of starting the web browsing session by
loading a web page, an Ajax engine is started. An illustration describing the Ajax model
is shown in Figure 4.1 [6]. To the left in the figure is the classic web application model,
where all new information for the web browser must come directly from the server side. To
the right in the figure is the Ajax web application model where the Ajax engine has been
introduced [6]. The job of the Ajax engine is both to render the user interface and graphical
representations as well as to handle the communication with the server side. This way, the
Ajax engine allows updates of the user interface and communication with the server to occur
asynchronously, independently of each other. The result is that the user never has to wait
for a blank browser window that is waiting for requested information from the server to be
retrieved by the client [6].

Figure 4.1: The classic web application model and the Ajax web application model [6].

14 Chapter 4. Theoretical Study

4.2.1 W3C Recommendations and Ajax

The W3C (World Wide Web Consortium) is the principal organization for developing stan-
dards for the World Wide Web. The organization was founded, and is still headed, by
Tim-Berners Lee in 1994, the inventor of the World Wide Web. The mission of W3C is
“To lead the World Wide Web to its full potential by developing protocols and guidelines
that ensure long-term growth for the Web” [20]. To create a path for web developers and
programmers towards using the World Wide Web to its full potential, allowing any web
related hardware and software to work together, the W3C develops protocols and guidelines
that will secure the future growth of the web. These documents are called W3C Recom-
mendations, which are under a royalty-free patent license and thus allowing anyone to use
them freely [20].

The existance of a W3C Recommendation for a technique declares that this technique has
reached a certain level of conformance, which likely makes it compatible with the hardware
and software common among the great mass of web developers and users.

4.2.2 Ajax Building Blocks

The following sections are dedicated to the introduction of and to some extent describe, the
different web building technologies that constitute the building blocks of Ajax.

A summary of the area of use for the different technologies for web page development:

HTML and CSS are used to present contents on a web page.

XML is used to store and transport data.

XHTML is a combination of HTML and XML.

JavaScript is the scripting language that binds all the techniques together.

XMLHTTP is a JavaScript object used to enable asynchronous data exchange between
client and server.

DOM serves as an interface which allows dynamic changes to be made to the contents on
a web page.

4.2.3 HTML

HTML (HyperText Markup Language) is a markup language that is based on a set of markup
tags that are used to describe HTML documents, also known as web pages [24]. HTML was
developed and described by Tim-Berners Lee in the early 1990s and it was part of the rapid
growth of the World Wide Web due to its simplicity as the main publishing language of web
pages [24, 11]. With HTML, it became possible to present information to a global online
audience as it was designed with the purpose of being an universally understood language,
a common language for all computers to read [21]. The language gives the means to publish
documents including texts, images, tables, lists, and more. The means of navigating between
different HTML pages is in the form of hypertext links, activated by the click of a button
[21].

4.2. Ajax 15

HTML documents consists of HTML tags and text. The HTML tags are simple keywords
within angle brackets like <html>, and they usually come in pairs, like <p>, the start of
a tag, and </p>, the end of a tag. The example in code Listing 4.1 shows how a simple
HTML document can look like and gives some examples what tags can be used for.

1 <html >

2 <body >

3 <h1 >This is a heading </h1>

4 <p>This is a paragraph </p>

5 </body >

6 </html >

Listing 4.1: Line 1 and 6) Text enclosed inside the tags <html> and </html> tags describe
the web page.
Line 2 and 5) Text enclosed inside the tags <body> and </body> is the contents displayed
on the browser.
Line 3) Text enclosed inside the tags <h1> and </h1> is displayed as a heading.
Line 4) Text enclosed inside the tags <p> and </p> is displayed as a paragraph.

4.2.4 CSS

CSS (Cascading Style Sheets) are used to define how to format and display HTML elements
[24].

When tags for formatting colors and fonts was introduced to the HTML 3.2 specification,
it unintentionally became a source of complications for web developers. In web sites with
large amounts of pages and contents, these new tags had to be added to every single page
where the formatting had to take place, which could turn into a very long and expensive
process. As a solution to the problem with this decentralized tagging, the W3C developed
CSS. The introduction of CSS in the specification of HTML 4.0 made it possible to separate
the appearance formatting code from the HTML document, to be stored in an external CSS
document [24]. The biggest advantage of CSS was that it enabled developers to change
the appearance and layout of any amount of pages in a web site, only by editing a single
external CSS file.

In addition to the external CSS file, there are two alternative ways to use CSS [24]. One
is the internal style sheet, included in the head of the HTML document (enclosed within the
<head> and </head> tags), which may be used when one page of a web site should have a
unique formatting. The other way is to use an inline style to locally format a specified part
of a HTML page, for example a paragraph. The inline style should normally be avoided
because the advantage of separating content from style is lost.
The example in code Listing 4.2 shows how an external CSS file can be included in a HTML
file, by using a specific <link> tag, to add formatting to text.

16 Chapter 4. Theoretical Study

1 <html >

2 <head >

3 <link rel=" stylesheet" type="text/css" href=" mystyle.css" />

4 </head >

5 <body >

6 <p>This paragraph is blue </p>

7 </body >

8 </html >

Listing 4.2: Line 3) Inside the <head> tag of the HTML document, a specific <link> tag
is used to include a CSS file named “mystyle.css”.

The example in code Listing 4.3 shows how an external CSS file (called “mystyle.css” in
this example) can look.

1 p {color:blue}

Listing 4.3: The CSS syntax consists of three basic parts:
Selector: usually the HTML element that you want to format. In this example it is “p”
(paragraph).
Property: the attribute that will be formatted. In this example, the color will be formatted.
Value: the value of the of the property. In this example, the value of the color is blue.

When opening the HTML file in a web browser, the paragraph has successfully been for-
matted to contain blue text when displayed in a web browser, as shown below:

This paragraph is blue

4.2.5 XML

XML (eXtensible Markup Language) is a markup language that was designed to store
and transport data. XML became a W3C Recommendation February 10, 1998 [24]. The
XML files are simple text files that can be created and edited with any software that can
handle plain text. The usage of XML documents is usually to carry data that can be
accessed, formatted and presented by a HTML file. Therefore it is notable that XML is not
a replacement, but a complement, to HTML. Compared to storing data in the HTML file,
XML comes in handy when you need to display dynamic data within your HTML document.
Instead of going through the procedure of opening the HTML file to edit the data locally,
you can store the data in an XML file, while keeping it separate from the layout and display
formatting tags in the HTML file. This way you can create separate documents for data
storage and layout descriptions, achieving a clearer and logically divided organization of
materials.

XML documents consists of XML tags and text. The appearance and properties of the
tags are much like those of HTML documents, but with the important difference that XML
tags are not predefined, you define your own, self-descriptive, tags. In XML documents,
compared to those of traditional HTML, it is necessary to include both start and end tags
for each tag. The contents of the XML file does not have any function on its own, it is just
a piece of information wrapped in tags [24]. To make use of the stored information, the file
must be read by software, such as JavaScript, to recieve and present it.

4.2. Ajax 17

The example in code Listing 4.4 shows what a simple XML document can look like.

1 <?xml version ="1.0" encoding ="ISO -8859 -1"? >

2 <message >

3 <to >Hanui </to>

4 <from >Calle </from >

5 <heading >Lunch today?</heading >

6 <body >Shall we meet at 1pm?</body >

7 <signature >Kindly , Calle </signature >

8 </message >

Listing 4.4: Line 1: Declaration that the file is a XML document of version 1.0 and that it
has been encoded with (ISO-8859-1 = Latin-1/West European character set).
Lines 2 and 8: Declares the beginning and end of the root element of the document. In this
case the root element is <message>, which indicates that the elements in this document
constitute a message.
Lines 3-7: These are the child elements of the root element. In this case those elements are
<to>, <from>, <heading>, <body>, and <signature>.

4.2.6 XHTML

XHTML (eXtensible HyperText Markup Language) is a combination of HTML and XML,
taking all the properties of the HTML 4.01 standard and adding properties from the XML
markup language. Some examples of important differences compared to HTML 4.01 are
that all elements must have both starting and ending tags and that tags must be in lower
case [24]. The reason for introducing the XHTML language is to take one further step
towards encouraging developers to create “well-formed” documents where everything has to
be marked up correctly. XHTML 1.0 became a W3C Recommendation January 26, 2000
[24].

4.2.7 JavaScript

JavaScript is a scripting language, a sort of lightweight type of programming language
[24]. An easily made misconception is that Java and JavaScript are similar since their
names sound the same. In fact the two languages are completely different in both concept
and design [24]. Java, is a powerful and more complicated programming language, while
JavaScript was designed as a means to add interactivity to HTML pages [24]. JavaScript is
usually embedded in the HTML code of web pages and can read and change the contents
of HTML elements. The language is designed as an integrated part of the browser on
the client side, and is an interpreted language, which means that JavaScripts are executed
without compilation [24]. In order to make the web browser recognize and execute JavaScript
commands they must be enclosed within a <script> tag.

A JavaScript can be set to be activated by an event such as when a user clicks on a
HTML element, or is entering text into a text field in a form.

If a JavaScript is supposed to be activated when a web page loads, it is put in the
<body> section of the HTML page. The example in code Listing 4.5 shows how a very
simple JavaScript can be used for writing output to a web page, without an activating event.

18 Chapter 4. Theoretical Study

1 <html >

2 <body >

3 <script type="text/javascript">

4 document.write ("Ice cream is delicious ");

5 </script >

6 </body >

7 </html >

Listing 4.5: Lines 3-5: The JavaScript command, enclosed in the <script> tag, is “docu-
ment.write” which is a standard command for writing output to a web page. This command
will simply output the text line “Ice cream is delicous” on the web page.

Scripts that are supposed to be activated by an event are put in the <head> section of the
HTML page. Then the Script is called and executed when the activating event is occurring.
An example showing how a JavaScript can be activated by a web page event is shown in
code Listing 4.6.

1 <html >

2 <head >

3 <script type="text/javascript">

4 function message ()

5 {

6 alert ("Alert enabled by the onload event ");

7 }

8 </script >

9 </head >

10 <body onload =" message ()">

11 </body >

12 </html >

Listing 4.6: Lines 2-9: The JavaScript is enclosed in the <head> section of the HTML
page, and is waiting to be activated by an event.
Line 10: The activating event in this example is that the body of the web page is loaded.
When the page is loaded, the JavaScript is programmed so that an alert popup will appear
in the web browser.

4.2.8 XMLHttpRequest

XMLHttpRequest is a JavaScript object that makes it possible for the client to communicate
directly with the web server after a web page has been loaded, without having to reload the
whole page [24]. XMLHttpRequest has not yet become a W3C Recommendation, but there
is a working draft of such a document, latest updated on August 20, 2009 [23]. As described
above, it was previously not possible to update information on the web page without using a
HTML form, in which a user clicks a “Submit” button to activate the information exchange
and then wait for a new page to load with the new information from the server. During this
time the user could do nothing but wait [24]. The XMLHttpRequest object is what enables
the much desired functionality of making HTTP requests and recieve responses rapidly and
hidden from the user, without visual interruptions [18].

4.2.9 Ajax Engine Example

The following example (adapted from W3Schools [25]) consists of a HTML document called
“testAjax.htm” with a form containing two input fields: Name and Time. The user fills

4.2. Ajax 19

out the “Name” field, and then the “Time” field will automatically be filled out by an Ajax
engine that works in the background. The HTML for the form is shown in code Listing 4.7.

1 <html >

2 <body >

3 <form name=" myForm">

4 Name: <input type="text" name=" username" />

5 Time: <input type="text" name="time" />

6 </form >

7 </body >

8 </html >

Listing 4.7: Line 3-6: The HTML document “testAjax.htm” contains a simple form with
the two fields “Name” and “Time”.

The core of the Ajax engine is the XMLHttpRequest object. The JavaScript function
ajaxFunction() in Figure 4.8 creates an XMLHttpRequest object. This creation of the
XMLHttpRequest works in most new browsers (code for solving compatibility issues with
older browsers have been omitted in this example).

1 <html >

2 <body >

3 <script type="text/javascript">

4 function ajaxFunction ()

5 {

6 var xmlhttp;

7 xmlhttp=new XMLHttpRequest ();

8 }

9 </script >

10
11 <form name=" myForm">

12 Name: <input type="text" name=" username" />

13 Time: <input type="text" name="time" />

14 </form >

15 </body >

16 </html >

Listing 4.8: Line 6: A variable named xmlhttp is created to hold the XMLHttpRequest object.
Line 7: The XMLHttpRequest object is created.

When a request has been sent from the client and is being processed by the server, there
must be a function that receives the data on the client side. The “onreadystatechange”
property, as shown in code Listing 4.9, holds that function. The function is then called
automatically when new data is sent from the server.

The readyState property contains the current status of the server’s process of the re-
quest. The onreadystatechange function will be executed every time the readyState property
changes. The different values for readyState (the current state of the request) are listed be-
low:

State Description
0 The request is not initialized
1 The request has been set up
2 The request has been sent
3 The request is in process
4 The request is complete

20 Chapter 4. Theoretical Study

The use of the properties onreadystatechange and readyState is shown in code Listing 4.9.

1 xmlhttp.onreadystatechange=function ()

2 {

3 if(xmlhttp.readyState ==4)

4 {

5 document.myForm.time.value=xmlhttp.responseText;

6 }

7 }

Listing 4.9: Line 1: When new data is sent from the server, the function in onreadystate-
change is called.
Line 3: If the readyState property is complete (4),
Line 5: the responseText property is used to recieve the data that is sent back from the
server.

To send a request to a server, the open() and send() methods are used. The open() method
initiates the request and it takes three arguments. The first argument defines which method
(GET or POST) to use when sending the request. The second argument is the address to
the server side script. The third argument declares that the request should be processed
asynchronously. The send() method sends the initiated request to the server. The open()
and send() methods are shown in code Listing 4.10.

1 xmlhttp.open("GET", "time.asp", true);

2 xmlhttp.send(null);

Listing 4.10: Line 1: The open() method says that the GET method should be used, that
the server side script is in the file “time.asp”, and that the request should be handled asyn-
chronously.
Line 2: The initiated request is being sent to the server by the send() method.

After inserting the code, the HTML page looks like in code Listing 4.11.

1 <html >

2 <body >

3 <script type="text/javascript">

4 function ajaxFunction ()

5 {

6 var xmlhttp;

7 xmlhttp=new XMLHttpRequest ();

8 xmlhttp.onreadystatechange=function ()

9 {

10 if(xmlhttp.readyState ==4)

11 {

12 document.myForm.time.value=xmlhttp.responseText;

13 }

14 }

15 xmlhttp.open("GET","time.asp",true);

16 xmlhttp.send(null);

17 }

18 </script >

19 <form name=" myForm">

20 Name: <input type="text" name=" username" onkeyup =" ajaxFunction ();" />

21 Time: <input type="text" name="time" />

22 </form >

23 </body >

4.2. Ajax 21

24 </html >

Listing 4.11: Line 20: The onkeyup attribute within the “Name” text field, activates the
ajaxFunction() when a user has entered a letter within the text field.

The server side script in Listing 4.12 is used for returning the current time, and is stored a
file called “time.asp”. The files “testAjax.htm” and “time.asp” must be placed in the same
folder for the code in this example to work. The response.write(time) function in the script
returns the current time when called.

1 <\%

2 response.write(time)

3 \% >

Listing 4.12: The server side ASP script, consisting of only one line of code, for returning
the current time.

When the HTML file “testAjax.htm” is run from a web server and viewed in a web browser,
it will look like in Figure 4.2.

Figure 4.2: 1) Before the user has entered anything in the “Name” field, there is nothing in
the “Time” field either.
2) As soon as the user has entered text into the “Name” field, the Ajax engine retrieves the
current time and displays it in the “Time” field.

4.2.10 DOM

The DOM (Document Object Model) is a programming interface that describes a standard
for logical structure of HTML and XML documents and how to access and modify the
contents [22]. DOM Level 1 (which is concentrated on HTML and XML document models)
became a W3C Recommendation October 1, 1998 [24]. Using the DOM, developers can
create HTML and XML documents structured as program objects, or nodes, making it
easier to develop web pages that can be dynamically modified and manipulated by users
through a web browser [18]. On the web site for the W3Consortium, it is stated that:

“With the DOM, programmers can build documents, navigate their structure, and add,
modify, or delete elements and content. Anything found in an HTML or XML document
can be accessed, changed, deleted, or added using the Document Object Model, with a few
exceptions.” [22]

In the DOM, everything inside XML and HTML documents is defined as a node. The
DOM presents the document in a tree structure, which can be visually displayed. The
methods for accessing the nodes within the DOM tree can be implemented with the help of
a programming language such as JavaScript. When an interface change has been made to
the DOM of the web page, it will appear immediately in the web browser.

Figure 4.3 shows an example of HTML DOM. Each part in the HTML document is a node
and this HTML document contains the four different types of nodes Document, Element,
Attribute, and Text.

22 Chapter 4. Theoretical Study

Document The DOM tree itself, not a part of the HTML document
Element HTML elements such as <p> and <a>
Attribute The attribute of an element, such as ’href’ in an <a> element
Text All text

Figure 4.3:
The root node in the HTML is <html>, since all other nodes are located inside <html>.
The <html> node is the parent node of its two child nodes <head> and <body>.
The <head> node holds a <title> node.
The <body> node holds a <p> and an <a> node.
The <title>, <p>, and <a> elements all hold text nodes.
The <a> element holds an attribute node.

An example of how a node within the DOM can be accessed with JavaScript is shown in
code Listing 4.13.

1 <html >

2 <body >

3 <p id=" magicmarker">sunny weather </p>

4 <script type="text/javascript">

5 txt=document.getElementById (" magicmarker "). innerHTML;

6 document.write("<p>" + txt + "</p>");

7 </script >

8 </body >

9 </html >

Listing 4.13: Line 3: Assign the <p> element with an id (a word of choice that is supposed
to identify the element), in this case the id is “magicmarker”.
Line 5: Use the JavaScript method document.getElementByID(), which gets an element with
a specific id. Tell the method to get the element with id “magicmarker” and then use the
innerHTML method, which extracts the text from the retrieved element.
Line 6: Use the JavaScript command document.write to output the text on the browser.

4.2.11 Technical Limitations of Ajax

Traditional web pages link to each other through simple hypertext links and pages with
different information are clearly divided from each other as they only contain passive in-

4.3. Other RIA Techniques 23

formation. Any updates on a specific page requires a full page reload, and thus can be
seen as a new page. Each different page, with its unique content, has its own web address.
Navigation between different pages on the web is similar to browse pages in a book, and the
page numbers in the book are represented by the unique web address of each page on the
web site. Going back from a page to the previously visited one is normally done by a click
of the “back” button in the web browser [3]. When dynamic pages are introduced by using
Ajax, the pages internal contents may change by an event, for example, the click of a button.
With dynamic web pages, the metaphor of turning pages with different page numbers in a
book does not apply anymore, as the content of the pages is no longer passive. When the
contents change internally on a web page, the address of the page might not define what
exact information is shown to the user. As a consequence of having pages with dynamic
information, web browser functions that are based on the web address as main reference
of navigation, such as the “back” button, or making bookmarks in the browser, might not
necessarily refer to the information that the user was expecting.

Ajax is dependent on the availability of JavaScript to work, and with JavaScript turned
off in the web browser, Ajax will not work. A problem with JavaScript is that it has
been implemented differently in different browsers and some older browsers might not fully
support modern Ajax features [18]. As neither HTML or JavaScript are designed to be used
for audio or video streaming, Ajax cannot be used for such functionality.

Other problems that have brought some critique to Ajax is that printing of Ajax web
pages do not always work well and that some search engines have trouble when searching
Ajax pages since they do not know what page states to include when indexing the web page
[16].

4.3 Other RIA Techniques

There are several techniques that compete on the market of RIA development and this
section describes some popular techniques for plug-in based RIAs. One advantage for plug-
in based techniques is the simplicity of development. They are called “Sandbox” techniques,
as they provide the developer with stable and well formed development environments that
will behave the same way across different platforms and browsers with their plug-in installed
[4].

4.3.1 Adobe Flash/Flex

Flash was introduced in the market in 1996 by Macromedia, currently developed and dis-
tributed by Adobe, and has become a very popular approach to adding animated graphics,
video, and interactive features to web pages [26]. The technique is often used to create ani-
mations, commercials, and RIA associated functionality. In recent versions of Flash, XML
capabilities have been added to increase the functionality, which enables new possibilities
to render RIA contents in the browser. This technology, which uses XMLHttpRequest, is
known as Flex (Asynchronous Flash and XML) .

The programming language for Flash applications is called ActionScript. In order to run
Flash applications on web pages, a Flash plug-in needs to be installed in the web browser.
According to market research from Adobe Systems, an approximate of 95% of Internet-
enabled personal computers had the Flash plug-in installed as of September 2008 [1].

The Flash technology has been criticized by Jakob Nielsen for being the main reason
that many web developers break usability principles [14]. He stated that the use of Flash

24 Chapter 4. Theoretical Study

often results in the breaking of conventions associated with traditional HTML pages. Basic
HTML related functions such as selecting text, form control, and right clicking contents on a
Flash application act in ways different from that in typical HTML pages. He also mentions
that many of these problems are possible to fix by the developers, but are often ignored as
it demands more work for the developer.

4.3.2 Microsoft Silverlight

Microsoft Silverlight was first released on the market in 2007 as a web application framework
for RIA applications with contents such as integrated multimedia, graphics, and interactivity
[24]. The programming environment for Silverlight include the languages XAML, C#,
JavaScript, and Ruby. The Silverlight plug-in must be installed in the web browser in order
to run the applications. An advantage with Silverlight is that its language for describing
user interfaces, XAML, is an interpreted language (which does not need compiling), which
enables the contents to be searched by search engines [28].

4.3.3 JavaFX

JavaFX was introduced in the market by Sun Microsystems in 2007. It is a software platform
for RIAs for many different types of devices [27]. The programming language for JavaFX
applications is JavaFX Script, and the Java Runtime Environment is required to run the
applications. One of the advantages with JavaFX is a feature called “Drag-to-Install” which
means that a user can drag a JavaFX widget or application from the web browser window
out to their desktop. The unique property of it is that the application will remember its
state or context after the user has closed the web browser.

A current problem with JavaFX applications is that the Java Runtime Environment is
a rather big plug-in to download, and that the performance is slower than both Flash and
Silverlight [5].

4.4 Usability and Ajax

A great portion of the new web sites that appear on the web are designed with dynamic
RIA functions based on techniques such as Ajax. The users are now actively interacting
with the content and often even produce much of the materials themselves. To improve and
develop the RIA concept, new interfaces and functions for navigating and editing materials
on the web are constantly invented. There are not always standards or clear guidelines to
follow when designing these new functions, as they do not have any clear predecessors. The
web developers that are responsible for ensuring the usability of the functions have a task
which is not always easy to master [17]. In an attempt to create a set of guidelines to help
developers of user interfaces, and to have in mind when implementing new functions, Jakob
Nielsen has created a set of heuristics [15]. Bruce Tognazzini has, with the same intent,
created a list of principles for interaction design [19]. As new Ajax based functions are
invented and developed for the web, it is desirable that the developer ensures that usability
is maintained for the proposed users of the functions. Having Nielsen’s heuristics and Tog-
nazzini’s principles as a reference when designing is one way for the developer to facilitate
the focus on usability during the design process.

The following sections discusses a selection of heuristics and principles for interaction design
from the perspective of Ajax related functions.

4.4. Usability and Ajax 25

4.4.1 Nielsen’s Heuristics

This section presents a selection of Jakob Nielsen’s heuristics for User Interface Design and
how they can be they can be used to improve Ajax enhanced functions.

H1 - Visibility of system status - The interface should keep the users informed of the
system status all the time if possible. This could be done with feedback that lets the user
know what is happening.

Figure 4.4 [12] shows an example of how a simple message box (status information area)
can be used to indicate the status of a generic Ajax request being processed.

Figure 4.4:
1) The user types text in the “text input field” and presses the submit button to post the text.
2) The message “Save in progress...” is displayed while the request for posting the text is
being processed by the server.
3) When the request is completed by the server, the message “Saved!” is displayed in the
status information area.

H3 - User control and freedom - Web site visitors occasionally get lost in navigation
and choose system functions by mistake and will need a convenient “emergency exit” to get
out of unwanted state without a complicated exit procedure. Support for undo and redo
also provides a greater degree of user control. Figure 4.5 shows an example of an undo
button for a form.

Figure 4.5: After the third step of the form submit process in Figure 4.4, an undo button
appear next to the save button. If the user presses the undo button, the posting of the text
will be undone.

H5 - Error prevention - Helpful error messages using natural language are good in a
design but even better is to create a design that prevents the problem from happening in
the first place. A way to do this is by presenting a confirmation option to the user before
committing an action that might lead to a problem or a conflict.

26 Chapter 4. Theoretical Study

Figure 4.6 [9] shows an example of how a confirmation option is shown to the user before
committing an action.

Figure 4.6:
1) A user types a desired username in the text input area and waits for the server to check
if the username is available or already taken by someone else. The message “Checking
availability” is displayed in the status information area.
2) The server has answered that the username is available and the message “This username
is available!” is displayed in the status information area.

H6 - Recognition rather than recall - Make a design where objects, actions and options
are visible in order to minimize the user’s memory load. The user should not have to
remember information between different states of the site to be able to proceed within the
system. Integral instructions and information for use of the system should be visible or
easily accessible when they are needed by the user.

When filling out forms with multiple fields, designed in the traditional client-server
model, faulty entered information is shown to the user first after the form has been submitted
to the server and the web page has been reloaded with the answer to the client. The
appearance of the reloaded page could mark out for the user the fields with incorrectly
entered information so that the information could be corrected. Sometimes, the information
could even disappear from all the fields after a page reload, even if only one field was filled out
incorrectly, forcing the user redo everything. By using Ajax functions for form validation,
as described in Figure 4.6, users can get continuous status information about the process
and get the opportunity to correct mistakes while filling out the individual fields.

4.4.2 Tognazzini’s First Principles on Interaction Design

This section lists a selection of Bruce Tognazzini’s First Principles on Interaction Design
and how they can be used to improve Ajax enhanced functions.

T10 Latency Reduction - Reduce latency by pushing computations and transmissions
into the background. The user’s perception of latency can be reduced by using visual
feedback of the computation, such as a progress bar or an hourglass. Avoid possibility for
multiple clicks of the same button or object, when it is not intended.

The example in Figure 4.7 (variation of Figure 4.6) shows how to avoid the possibility
for multiple clicks of a button before it is confirmed that the action is possible.

4.4. Usability and Ajax 27

Figure 4.7:
1) Before the server has confirmed that the desired username is available, the submit button is
faded and do not respond to a click by the user, thus avoiding the risk of sending information
until the server has responded.
2) If the server responds that the username is available, the submit button changes to clear
and it is possible to click to submit the request.

A way to reduce latency for users is to have the browser anticipate likely user actions by
requesting preparatory information by the server [2]. An example of predictive fetch is
implemented in Google Maps [8], where the map is fetching map graphics outside of the
viewable area so that the user doesn’t have to see and wait for actual loading of the map
while slowly moving around the map in any direction.

Text box auto-complete is a popular way to reduce latency by examine the first few
characters typed by a user, and then suggest words from a predefined list [29]. An example
of this function is shown in Figure 4.8.

Figure 4.8:
1) A user has typed the text “Car” into the text input field, and Ajax retrieves suggestions
from a list of predefined words.
2) and 3) As the user keeps typing letters into the text box, the suggestions update continu-
ously.

T13 Protect the User’s Work - Secure the work of the users by making sure that entered
data does not get lost as a result of a user induced error. Any unwanted reasons for losing
data are unacceptable except the unavoidable such as a power out. Continuous-save in the
program architecture is a preferable solution to this hazard.

Continuous auto-save of a document without complete page reloading exists in GMail [7].
The auto save function is activated by time intervals, so that the document is continuously
saved while the user is writing the mail.

28 Chapter 4. Theoretical Study

Chapter 5

Accomplishment

This chapter describes the development process of the project. The time plan for the
project, containing all important deadlines and major events, is described in Section 5.1. A
selection of ideas and concept models for the design of the web site that was formed during
the development process are presented and described in Section 5.2.1. Section 5.3 presents
some of the ideas and solutions for different interesting programming related problems that
arose during the implementation of the web site.

5.1 Time Plan

A time plan was set up at the beginning of the project, containing dates for the deadlines for
all important steps during the development and documentation process. The full time plan
can be seen in Appendix B. The different deadlines were decided from estimates about how
long time and how much effort the different parts of the process would need to get finished.
Some important steps were finished before the time plan was set up, such as the initiation of
the project and the elicitation of the first requirements for the web site. The first four weeks
of the planned time was spent with the theoretical study in Chapter 4. When the theoretical
study was completed, the elicitation of requirements continued. During the elicitation, the
requirements were also refined, written down, and finally checked so that they correspond
to the scope and nature of the project.

When finishing the first version of the requirements document the work with the im-
plementation of the web site begun. The programming was finished after its dedicated six
weeks and a first version of the foundation for the web site was ready and presented to the
restaurant owner. Only a week after the meeting with the owner, the further development
of the product was delayed for about a month due to an unplanned relocation of my working
place from South Korea back to Sweden. When the situation had become stable in Sweden,
about one additional month was spent refining the product and writing the project report.
In the end, all the deadlines for the development of the product were kept, but the dead-
line for the finishing of the report had to be postponed twice due to the time management
complications that arose during the relocation from South Korea to Sweden.

29

30 Chapter 5. Accomplishment

5.2 Developing the design

Before the work with the development of the design of the web site had begun, a few factors
which would come to play a big role in the design process had not yet been decided. There
were no requirements saying exactly how the aesthetic design of the product should be, so
there was almost total artistic freedom for me to come up with a design that I thought
would work. The owner of the restaurants had not yet decided if the web site would be only
for Ye-Ga, the most popular of the restaurants, or for all three restaurants.

5.2.1 Concept models

Since the factor of usability of the functions and features on the web site was very important
to the project, the design of the product was a big part of the development process. The
requirements in Appendix A were used as the base for choosing which functions to include
in the interface and how to distribute the contents over the site. A number of concept
models were drawn in the design process and were evaluated to see which one would be
most suitable to continue working on as a sort of template for the actual web site. All the
early models were made to be used only for Ye-Ga since it had not yet been decided if the
project would include web pages for all three restaurants or just one restaurant. In order
to clarify and document the thought out functionality of the different concept models, they
were all provided with textual descriptions of specific functions.

One of the fist conceptual models that were candidates for the design of the site is presented
in Figure 5.1. The main framework of the web site would consist of two sections with a
navigation frame on top with links to the different pages of the web site. The navigation
frame was made to look something like a business card with the restaurant name, address
and telephone number. The bottom frame would be the main content frame for all the
contents of the different pages of the web site, such as Welcome page, About page, and so
on. An early idea was to have four pictures to the left in the content frame, for aesthetic
purposes.

5.2. Developing the design 31

Figure 5.1: An early conceptual model of the structure of the web site. There was a presen-
tation frame on top, and a content frame below it with links to all the different pages of the
site and where the page contents would appear.

After deciding the main framework of the design of the web site, with a navigation frame
on top and a content frame below it, the different pages and their functions were quickly
drawn up to a certain level of detail. The first page to be refined and developed in more
detail, including full functionality descriptions, was the administrator login page shown in
Figure 5.2. Many of the functions and behaviors of the different events on the admin pages
were developed in direct relation to the results of the research in the theoretical study in 4
regarding usability enhanced by Ajax techniques. For example when you click the “send”
button in the example it disappears right after it has been clicked, just like described in
“T10 Latency Reduction” in section 4.4.2. The login page for the administrator settings
was supposed to be a very simple page. What you would see when you first go in to the
page was what is shown inside the top frame in the figure. The only functionality, except
actually logging in, was for retrieving the password if you lost it.

32 Chapter 5. Accomplishment

Figure 5.2: The login page for the administrator settings.

After successfully logging in to the administrator pages of the web site, the user would get to
the administrator settings page. By the time the model for the administrator settings page
was created, it had been agreed that a web site with pages for all three restaurants would
be created. The interface for the administrator settings page is shown in 5.3. The password
change form, to the left in the bottom frame in the figure, used the kind of instantaneous
form verification that was explored in “H5 - Error prevention” in section 4.4.1. When
a user was filling out the form for changing the password, the entered information was
simultaneously validated. In the administrator settings page you could either choose to go
to one of the three restaurants’ web pages to administer, or to edit the password and e-mail
settings for the administrators.

Figure 5.3: The interface with administrator settings for the web site.

Apart from the administrator pages, all other pages of the web site was viewable from either
the guest perspective, only displaying the contents of the pages, or the CMS perspective,
containing all editing functionality for the administrator of the web site. In order to see
the web site from the administrator perspective, it was necessary to first log in via the
administrator login page. The design of the framework of the web site from the guest
perspective is shown in Figure 5.4. The navigation frame was very simplistic without any
distracting elements or functions. It contained the essential contact information for the

5.2. Developing the design 33

restaurant and the site navigation menu for the different pages of the restaurants. The
content frame was only an empty placeholder for the main contents of the page that you
could navigate to through the site navigation menu. The design was quite similar to the
design in Figure 5.1, except that the site navigation menu has been moved up into the top
frame.

Figure 5.4: A slightly refined design of the framework for the web site.

When logged in as administrator, you would see the web site from the CMS perspective.
Even if the navigation frame of the web site contained very little elements, the restaurant
address and restaurant logo were possible to update via the CMS. The model in 5.5 shows
what the navigation frame would look like from the CMS view. With this model, many of
the key functions of the CMS view were introduced. Right below the navigation frame was
an administrator specific frame for image updating tools. In there you could upload new
background images and there was an iframe dedicated to status messages related to image
uploading. The reason for including an iframe is explained in Section 5.3.6.

Figure 5.5: The navigation frame from the CMS perspective.

Status Messages - In different locations in the CMS view there were status fields that in-
dicated what events were being activated in the interface. In the top of the navigation frame

34 Chapter 5. Accomplishment

in Figure 5.6 there was such a status field that said “YOU ARE CURRENTLY LOGGED
IN AS ADMINISTRATOR”, which also worked as an event status field, where status mes-
sages were shown when different events in the top frame were activated.

Image uploading - All images on the web site were dynamic and could be uploaded via
the CMS. In the upper left section of Figure 5.6 there is an image of two Korean signs that
make up the logo of the restaurant. Since you were supposed to be able to upload a new
image in its place, it needed some functionality for image uploading. Around the image was
a line that simply indicated that it was a picture. Although it does not show in the figure,
when you clicked the image a pair of buttons for uploading a new image would appear. One
of the buttons said “upload” and the other button said “cancel”. If you clicked the upload
button, you would get to choose a new image from your computer to upload in the place
of the existing image on the web site. If you did not intend to upload a new picture or
simply change your mind about uploading a new picture, you could click the cancel button
and the pair of buttons would disappear again. Upon the event of uploading a new image,
the status of the image upload would show in the iframe located by the background image
updating tools in Figure 5.5.

Background image uploading - Not only the pictures on the web pages were possible to
replace, also the backgrounds of all the different frames were possible to change. To the left
in the lower of the two frames in Figure 5.6 were the functions for background image upload-
ing. The uploading functionality was principally the same as for uploading the restaurant
logo image. The only difference was that instead of clicking an image to replace to get the
upload buttons, you would click the text “Upload new frame background” to make the pair
of upload buttons appear.

Text editing - Nearly all the texts on the web pages, except for example the navigation
menu choices and admin texts, were editable. To the left in the navigation frame in Figure
5.6 was a text field for the address and telephone number of the restaurant. Around the
text field was a frame that indicated that the text was editable. If you started editing or
writing text inside the field, a pair of buttons would appear. One of the buttons was a save
button that saved the changes that had been made to the text, and the other button was
a cancel button that reverted any current changes that had been made to the text. When
one of the buttons had been clicked, they both would disappear again.

Some of the described events in Figure 5.6 were only done as a concept, and not chosen to
be implemented in the final web site. An idea that emerged from “H1 - Visibility of system
status” in Section 4.4.1 was to display current save status when pressing a save button, so
that the user could follow the different stages of the saving process. Status updates inside
the save button, as seen to the right in the figure, were not considered necessary since the
saving process was quicker than was useful to be shown in the interface. The “mouse over”
effect that is described to the left in the figure was implemented, but only for images, and
a bit different than what is shown here.

5.2. Developing the design 35

Figure 5.6: The top frame from the CMS perspective. Many of the usability and Ajax related
functions that were later used in several different locations of the web site emerged from this
conceptual model.

When the design of the navigation frame, with site links and basic information was finished,
it was time to draw up the different content pages. The set of pages that was worked on as
concept models were:

Welcome - The splash screen (page that is first shown when you enter the web site) with
a welcome message by the owner and a picture of the staff or the owner of the restaurant.

The Restaurant - The history of the restaurant and specific information about the differ-
ent foods.

Directions - A page with a map and directions to the restaurant. Possibly pictures and
text about the nearby area and tourist attractions.

Menu - The food menu for the restaurant, containing Korean name of the dish, Korean
explanation of the dish, English explanation of the dish, price, and possibly an image of the
dish.

Table Manners - A page for foreign tourists who wanted to learn about how to eat the
different dishes in the restaurant.

The first page that was designed was the guest view of the Welcome page, as seen in Figure
5.7. The page was only supposed to contain one picture and one text. The reason for the
simple setup was to start up the designing process slowly, with an easy layout.

36 Chapter 5. Accomplishment

Figure 5.7: The first conceptual model of the Welcome page from the guest view. It was
designed to be of extreme simplicity, to get an open starting point for the coming designs.

Then a concept model of the CMS view of the Welcome page was created, as shown in
Figure 5.8. It maintained the simplicity of the page from the guest view, but with added
functionality for updating the picture and text. The updating functions were going to work
exactly like described in Figure 5.6. The frame for the picture and the text were going to
be static in their positions and with fixed sizes.

Figure 5.8: The design of the concept model of the Welcome page from the CMS view was
equally static and simple as the page from the guest view.

After finishing the simple models of the Welcome page, a more dynamic model of The
Restaurant page was formed, as seen in Figure 5.9. The model’s main new feature was that
instead of having only one pair of a picture and a text, you could now add any desired
amount of pairs of pictures and texts, called entries. The adding of new entries was going
to be done by uploading a new picture and writing a new text inside a dedicated, yellow,
frame and then pressing the button for adding the new entry. Each new added entry was

5.2. Developing the design 37

added to the page and had full possibilities for editing the text and uploading a new image.
The entries were going to be added on top of each other and with possibilities to move a
entry up or down in the hierarchy of entries by pushing arrow buttons.

Figure 5.9: The concept model of The Restaurant page had the new possibility of adding
pairs of pictures and texts. Any desired amount of pairs would now be possible to have in
the page. Functionality for editing all texts, uploading new pictures, and moving pairs up
and down in relation to each other was designed.

To me, the design of The Restaurant page felt useful and easy to use, so it was decided that
other pages were also going to be designed in a similar fashion, or even in the exact same
way. The pages with the same proposed design were going to be Welcome, The Restaurant,
Directions, and Table Manners. The only page with different design and functionality was
the Menu page.

The Menu page from the guest view can be seen in Figure 5.10. One of the two entry
types of the Menu page was the menu headline entry for the different types of meals such
as “Chicken”, “Beef”, and “Pork”. The headline would consist of a black wide banner with
white text on top of it. The other constituent was the dish entry which would include all
the essential information about a dish and a corresponding photo of the food. There were
thoughts about having spice grading of each dish, but this feature was never implemented.

38 Chapter 5. Accomplishment

Another idea that was not implemented was to have automatic PDF document generation
of the menu, for printing purposes.

Figure 5.10: The menu from the guest view. Two entry types made up the Menu page; the
entries with the headline of the dish categories and the dish entries.

The design of the CMS view of the Menu page, as seen in Figure 5.11, was more of a
reworked and refined version of the conceptual model of The Restaurant page than a model
with new ideas. Adding new dish entries and new headline entries were going to be done
in a very similar fashion to that of adding new pair entries on The Restaurant page. All
the different entries would also be fully editable, both text and image, and movable up and
down in their hierarchy on the page. One feature that was added here and was implemented
was that you could choose where in the hierarchy a new entry would appear after being
added.

5.3. Implementation 39

Figure 5.11: The Menu page from the CMS perspective. The functions were designed very
similarly to the functions of the CMS version of The Restaurant page.

The conceptual models presented in this section served as main templates for the imple-
mentation of the different pages of the web site.

5.3 Implementation

When the conceptual models of the web site had been finished to a certain level of detail, the
implementation of the code for the pages began. The plan was to implement the code to be
as similar to the conceptual models as possible. The first task was to set up a working web
server on a local computer to be able to easily test and debug the code that was about to
be implemented. A package called WAMP (Windows, Apache, MySQL, PHP) was installed
on a local computer, since it contained software for running a web server with all necessary
components for running the code of the web site. The choice to use PHP for server side
functionality was made since I had experience in the language from a previous project.

40 Chapter 5. Accomplishment

5.3.1 Administrator Pages

The first task of the implementation was to construct the administrator login page, so that
it would be possible to view the different pages of the web site from either the guest view
or the CMS view. The administrator login page was implemented with the design that
was proposed in the conceptual model in Figure 5.2. The password for the administrator
login was stored in a separate PHP document, to keep it separated from the other code.
A successful login with the correct password was only stored in the current session, there
was no way of saving the login in a cookie. This was chosen since the administrator pages
should be able to use from virtually any computer anywhere, and if an administrator would
sit at a public computer and forget to log out after changing something, nobody else should
be able to stumble upon the administrator pages due to a forgotten cookie.

When the administrator login page had been finished, it was possible to reach the admin-
istrator settings page as a logged in administrator. Since the administrator settings page
was the same for all restaurants, only having functionality for changing the password and
adding administrator e-mails, it was not yet necessary to divide contents based on restau-
rant, only based on language. The password changing function and e-mail management were
implemented just as shown in the conceptual model in Figure 5.3, as a fully functional Ajax
enhanced interface. In order to change the current password, it was necessary to write the
old password in a field, to make sure it was actually an administrator changing the password.
Then the new password had to be written in two fields, in order to ensure that the thought
of new password was not misspelled. When the three fields had been successfully filled out,
it was possible to click a save button that saved the new password. The function to add
administrator e-mails was used for the function on the administrator login page to retrieve
a lost password. If an administrator’s e-mail address was part of the administrator e-mail
addresses, he could write that same e-mail address in the dedicated field on the adminis-
trator login page to get the administrator password sent to his e-mail. The field for adding
an administrator e-mail was programmed with a set of regular expression rules that would
ensure that a well formed e-mail address was written in the field before it was possible to
add it to the list of e-mails. The last function of the administrator settings page was to
remove currently added administrator e-mails from a drop down list.

5.3.2 Storing the Data

The web site was going to be available in several languages and for several restaurants, and
therefore the textual contents would have to be split up to be fetched depending on what
language and restaurant was chosen. Very early in the process it was chosen that all textual
language specific data would be saved in XML documents. There were several reasons for
the choice to use XML stored data in stead of saving data in a database such as MySQL.
The main reason was that data stored in XML documents would be more portable, since all
data is stored in local text files, it would be very simple to move the whole web site with all
contents included on, for example, a USB memory in a compressed ZIP file. It is possible
to achieve the same portability of the type of data that is stored in a MySQL database,
but it would require algorithms or third party software for downloading the database into
local data files that would then be possible to reinsert into the database software. Another
reason for choosing XML based data was that XML seemed well fit to use together with the
other Ajax related techniques. For me, the choice of using and learning about XML was
interesting since I had already worked with MySQL databases for earlier projects.

Most of the code for XML was written in JavaScript and therefore most of the fetching

5.3. Implementation 41

and rendering of XML contents was taking place on a browser level. Code Listing 5.1
describes one kind of XML element tag structure that was used in the implementation
and code Listing 5.2 shows the corresponding tag in the HTML DOM. In this case it is a
<h1> headline in the HTML DOM structure that is called “Admin page” in English and
“Admin-sida” in Swedish inside the text elements in the XML structure.

1 <contents >

2 <site_base >

3 <pagetitle language ="eng">Admin page </pagetitle >

4 <pagetitle language ="swe">Admin -sida </pagetitle >

5 </site_base >

6 </contents >

Listing 5.1: The XML element tag structure.

1 <h1 id=" pagetitle"></h1>

Listing 5.2: The HTML DOM identification tags.

5.3.3 Rendering the Contents

The original HTML DOM structure and corresponding XML structure was only supposed
to be used for pure textual contents on the web pages, such as paragraphs or headlines, not
for text within buttons or place holders for images. The structure shown in code Listing 5.1
and code Listing 5.2 was used in for the original text rendering algorithm.

The algorithm for rendering text and image contents is described below:

1. Find out what language, restaurant, and specific page was chosen. This information
was available in either cookies or the page address.

2. Fetch the corresponding XML file with content data for the current page.

3. Read the HTML DOM structure to find all elements with specified id tags.

4. Use the HTML tag to fetch a corresponding element tag, with the exact same name,
within the XML document, and fetch the text content of the found XML element.

5. Place the text or specified image, from the XML element, inside the HTML tag and
display it on the page in the browser.

As the structure of the pages got increasingly complicated, a compromise had to be made
with the current XML tag format when it was going to be used for language specific images or
texts inside of buttons. The XML structure that had been created was only supposed to be
used for texts within text areas with, for example, or <p> tags. The code with the
algorithm for drawing out page specific contents was enhanced to be able to handle different
types of elements of the HTML DOM, such as buttons and images. The code was never
optimized to be used with a common XML format that would work for all different element
types of the web site, instead the rendering algorithm was altered to be able to understand
the different types of XML formats for texts, images, and texts inside of buttons.

One of the aspects that made image rendering a bit tricky was that some images were
going to be the same for all languages while other images were going to be language specific.
This was solved by keeping both the placeholder and image source specification for images
that were the same for all languages within the hard code in the HTML documents, and
not including them in the XML code.

42 Chapter 5. Accomplishment

5.3.4 Separating Contents for Different Restaurants

As the project would include web pages for three different restaurants, it was necessary
to find a way to use the code in a way that all restaurants could use the same site base,
only with restaurant specific content. All the code that was going to be identical for the
restaurants, such as the admin login page, admin settings page, the framework for the whole
restaurant web site, some of the site CSS design, and so on, was stored in the root folder
of the web site. The restaurant specific contents such as page titles, textual and image
contents of the different pages, were stored in a folder with the restaurant name. This way,
all the contents that were shared between all restaurants was accessible from the web site
root folder, and the restaurant specific contents were all stored together in one folder each.

5.3.5 Server and Browser Side Functions

The browser side functions for the web site were implemented in JavaScript and all the code
was stored in one big function library file. The server side functions were implemented in
PHP and all the code was stored in another function library file. It was chosen that all the
PHP server side functionality was going to be written as parts of a switch statement, and
not as different functions, which performed the different actions based on keywords that
were sent in. Most of the page updating functions on the pages using the XMLHttpRequest
object were called by the click of a button, or a keystroke, on the web site interface which
in turn sent the keyword to the switch statement in the PHP document for performing the
requested action.

When performing updating actions based on Ajax techniques, status messages were
shown in chosen locations in the interface to indicate in which state the updating process
was. Since the XMLHttpRequest object is written in JavaScript and with a dedicated
variable to tell the current status of the request being performed, it was very easy to show
in the browser the different stages in the updating process. Different color codes were used
in combination with formulated text messages for different status notifications.

5.3.6 Image Uploading Issue

When submitting changes to texts in the web site interface, the collaboration with the XML-
HttpRequest object was working seamlessly and as supposed since the object is specifically
designed to handle text. A problem that occurred was that the XMLHttpRequest object
only could handle text and not images at all. In order to upload an image it was necessary
to find another way instead of using the the XMLHttpRequest object. There was no evident
way, with the current page design, to solve the issue to upload a new image on the web site
without reloading the current page entirely. Instead of accepting a full page reload when
uploading an image, the problem was solved by creating a small iframe inside the CMS
interface, that would handle the entire uploading process by loading the PHP functions for
image uploading. The image uploading started working just fine, but now the XMLHttpRe-
quest object was no longer involved, so it was not able to show the process of uploading the
image, and status messages could not be shown in the same way for image uploading as for
text editing.

A solution to the status message problem during image uploading was thought out by
simply showing the image upload status inside the iframe that was created in the CMS
interface. Another problem that had occurred was that the image that was uploaded, if
it was supposed to replace an already existing image on the page, had to be shown in the
browser after it had been uploaded. This problem was solved by setting a timer for reloading

5.3. Implementation 43

the relevant image after an interval of a couple of seconds after uploading the image inside
the iframe. If the image was successfully uploaded within the time interval that was set for
the reloading function, the image would reload itself to show the new image.

5.3.7 Web Site Page Types

After careful consideration it was decided that each restaurant would have four pages each,
“Welcome”, “The Restaurant”, “Menu”, and “Location”, with the type of contents that
were described in the concept models in section 5.2.1. According to the concept models,
there were three different types of content pages for each restaurant. The first type of page
was used for the Welcome and The Restaurant pages. That type of page only contained
entries with pairs of a text and a picture, if no entries were added in the CMS, there were
simply no contents on those pages, only the picture for the page title whose place holder was
hardcoded into the HTML. Both pages were designed and worked in the exact same way.
The second type of page was the Menu page which was working in a similar way to the first
type of page, except that the entries did not only contain pairs of a text and an image, but
dish entries with all the information for a dish. Another difference was that on the Menu
page you were also able to add headline entries with, for example, categories for different
dish types. The third type of page was the Location page, which was working much like the
first type of page, except that there was a map hard coded in the HTML with the location
of the restaurant, placed between the page title and the first entry.

5.3.8 Dynamic Page Contents

On the pages with dynamic contents, which were all four pages for the restaurants, much
functionality had to be designed and implemented to make a useful CMS interface. All the
page specific data for the pages was stored in XML files with a structure that is shown in
code Listing 5.3. The entry in the example begins with the tag <entry type=“twin entry”>
and ends with the tag </entry>. The format showed is only one of several formats that
were designed for the different types of entries.

1 <contents >

2 <twin_entries >

3 <entry type=" twin_entry">

4 <id >1</id >

5 <location >3</location >

6 <text >

7 <eng >text for entry </eng >

8 <swe >text till inlägget </swe >

9 </text >

10 </entry >

11 </twin_entries >

12 </contents >

Listing 5.3: The structure for the entry information on one of the pages of a restaurant
page.

Since there were different types of entries, the XML format had to be able to handle dif-
ferent entries with different types of elements for information. Eventually, there were six
different types of entries on the pages. The specific entry type was stored as an attribute
called “type” in the XML entry element. A number of different entry types were included in
the final version of the pages of the web site. There were two types of pages with different

44 Chapter 5. Accomplishment

types of entries. The first type of page included the Welcome, the restaurant, and Location
pages and contained the four following entry types:

Twin entry with the attribute “twin entry”, consisting of a text to the left and a picture
to the right.

Reverse twin entry with the attribute “twin entry2”, consisting of a picture to the left
and a text to the right.

Headline entry with the attribute “twin headline”, consisting of a simple headline entry
with one line of text of a big size.

Image entry with the attribute “twin image”, consisting of a single image.

The second type of page was the Menu page, which had the two following entry types:

Headline entry with the attribute “menu headline”, consisting of a simple headline entry
with a single line of big white text on a black background.

Dish entry with the attribute “menu entry”, consisting of all the necessary information
and image of a dish, as explained in the concept model.

All modification of the internal contents of the different entries was done by updating the
XML contents with the help of the XMLHttpRequest object and PHP server side functions.
Also the moving of entries up and down the entry list on a page was done by the same
means. Implementing all the functionality was not free from problems but it was completed
in a consistent and organized way.

5.4 User Testing

Even if there was no focus on organized user testing during the project, there was a significant
amount of user testing taking part during the development of the web site. While developing
the conceptual models of the different parts of the web site, friends and family were asked
to try using the different functions in order to find out if the ideas were going to be useful
once implemented. Several ideas for functions of the web site were redesigned and reworked
due to outcomes of the user testing and discussions with different people. While working
on the implementation of the web site, users were once again asked to try out the different
functions to find out if the ideas had been implemented in a good way.

5.5 Photography

During my working period in South Korea, not much time was dedicated only to photog-
raphy. Two days were spent specifically for taking photos for the web site. The first day
was organized to take photographies of the different dishes in the restaurants. The dishes
were chosen by the owner based on which meals were most representative of the menus.
The chefs in the three restaurants prepared the meals and I went to the restaurants one by
one during the day to take the photographies. Those photos were then edited to fit into the
menu pages for the restaurants. The second organized day was supposed to be for taking

5.5. Photography 45

photographies of the staff in the restaurants. Unfortunately I was only able to take group
photos of the staff at Ye-Ga Chon. When I arrived at the other restaurants they had already
started preparing for the lunch hour, so it was not possible to gather everyone for group
photos.

Instead of having more organized photography sessions, I brought the camera everywhere
I went in Gongju in order to get some representative photos of motifs related to the restau-
rants. Since I visited the three restaurants to eat during many occasions, taking photos of
cooked food was done continuously. On a few occasions, I went out to different scenic spots
in Gongju to take photos of the surroundings both during day time and night time.

46 Chapter 5. Accomplishment

Chapter 6

Results

This chapter presents the finished web site design and explains the different functions and
possibilities with the CMS.

6.1 Pages of the Web Site

The figures in this section are example versions of some of the pages for the three restaurants.
All contents on all of the pages of the restaurants are available in both Korean and English.
The page The Restaurant is not shown here since it has the exact same structural design
as the Welcome page. Figure 6.1 shows the splash screen for the whole web site. The page
contains navigation links to the web pages for the three restaurants and the lock image in
the lower right corner links to the admin pages.

Figure 6.1: Choose which restaurant web page to visit, or log in to the admin pages.

47

48 Chapter 6. Results

An example of the Welcome page, from the guest view, for the restaurant Ye-Ga Chon is
shown in Figure 6.2.

Figure 6.2: An example of how the English Welcome page, from the guest view, for the
restaurant Ye-Ga Chon could look like.

6.1. Pages of the Web Site 49

Figure 6.3 shows an example of the same Welcome page, but this time in Korean.

Figure 6.3: An example of how the Korean Welcome page for the restaurant Ye-Ga Chon
could look like.

50 Chapter 6. Results

All three restaurants have extensive menus, and the example in Figure 6.4 shows a small
selection of dishes from the menu of the restaurant Ye-Ga.

Figure 6.4: An example of how the Menu page for the restaurant Ye-Ga could look like.

The last example, in Figure 6.5, is the Location page for the restaurant Cape Town. When
you first arrive at the Location page, the speech bubble shown in the example is not visible,
only the map itself is showing. To see the speech bubble you have to click the building for the
restaurant Cape Town, which is centered on the map. All the maps for the three restaurants
are in the form of embedded maps from Google Maps. The map is always located above
the entries, right under the page title, and can not be moved, resized, or edited in any other
way from the CMS.

6.2. Administrator Pages 51

Figure 6.5: An example of how the Location page for the restaurant Cape Town could look
like.

6.2 Administrator Pages

Before entering the administrator settings page, it is necessary to log in with an adminis-
trator password. The administrator login page is shown in Figure 6.6. Everything from the
login page is shown in the example, except the pictures of flags for language change. The
two things that can be done on this page is either to log in with the administrator password
or to retrieve the password, for a registered administrator.

52 Chapter 6. Results

Figure 6.6: The administrator login page.

If an administrator has lost the password, and he has a registered administrator e-mail
address, he should click the text that says “Forgot password? Click here”. The interface
that appears after clicking the text is shown in Figure 6.7. The field that appears is where the
registered administrator e-mail address is entered. The button for retrieving the password,
send, is only possible to click if a well formed e-mail address is entered in the field.

Figure 6.7: The interface for retrieving a lost password.

If an administrator enters his registered administrator e-mail address into the field and
press send, an e-mail with the password will be sent to his e-mail, like shown in Figure
6.8. The green field in the figure is a status message that is shown for three seconds before
disappearing again. There are many different types of status messages for different actions
on the web site. For example if someone enters an unregistered e-mail address into the field
in the figure, there will be a status message that tells the user that the e-mail address is not
registered.

Figure 6.8: A successful retrieval of a lost administrator password.

After successfully logging in, the administrator gets to the administrator settings page,

6.2. Administrator Pages 53

which is shown in Figure 6.9. The administrator settings include functions for changing
the password for the web site and to add or remove administrator e-mail addresses. It is
possible to distinguish administrator settings frames on the web site by their gray diamond
plate backgrounds. The login function is not individual since all administrators share the
same password for entering the CMS. The persons who can retrieve a lost password, by
using the password retrieval function on the administrator login page, must have an e-mail
address that is registered as an administrator e-mail address. If an administrator wants to
go on straight to the CMS of one of the tree restaurants, he simply clicks the restaurant
logo in the upper frame.

Figure 6.9: The administrator settings page. The administrator can choose either to click
one of the restaurant logos to go to the CMS for the restaurant pages or to manage the
administrator password and e-mail addresses. Frames that have gray diamond plate back-
grounds are only available in the CMS view.

The administrator e-mail managing interface has functions for adding and removing adminis-
trator e-mail addresses. In the example in Figure 6.10, the e-mail address “calle boketoft@hotmail.com”
is already a registered administrator e-mail address, and thus appears in the pop up menu
with registered e-mail addresses. To remove an administrator e-mail address, select the ad-
dress in the pop up menu and click the remove button. The address “calleboketoft@gmail.com”
has been entered in the field for adding administrator e-mail addresses. To add the address
to the list, just push the add button.

54 Chapter 6. Results

Figure 6.10: On the administrator settings page there are possibilities for managing the
administrator e-mail addresses.

It is also possible to change the administrator password for the web site. The interface for
password change is shown in Figure 6.11. There are three fields that need to be filled out
in order to change the password. Before the fields have been filled out correctly, the save
button is disabled and thus not possible to click. The first field is for the old password, and
if the old password is typed correctly, a green check mark will appear next to the field. The
two other fields are for the new password. If those two fields are filled out in the exact same
way, green check marks will appear next to those fields as well. When all three fields have
been filled out correctly, and there are green check marks next to all fields, the save button
will become enabled and possible to click in order to save the changes.

Figure 6.11: The interface for changing the administrator password. It is necessary to fill
out the fields correctly in order to save the new password.

6.3 CMS Functions

The CMS view of the web site contains quite many functions, but all functions that are
used for similar purposes are designed to work in very similar ways. The two main functions
of the CMS is to upload pictures and write texts directly in the web browser. In Chapter
5, most of the concepts for the functionality were explained, but since the implemented
functions did not turn out to work in the exact same way as thought out in the concept
models, they will be explained in detail here as well. In Figure 6.12 an example with the
Welcome page for the restaurant Ye-Ga Chon, from the CMS view, is shown. The page is
empty from entries, so there is nothing except the page title that says “Welcome” on the
page. The bottom frame, with the names of all the three restaurants, is a navigation bar
for going to the different restaurants’ pages. The frame is available both in the CMS and
the guest view.

6.3. CMS Functions 55

Figure 6.12: An example of the CMS view of the Welcome page for the restaurant Ye-Ga
Chon.

6.3.1 Image Uploading

The following figures, Figure 6.13 to Figure 6.17, illustrates an example of the procedure
for uploading a new image on the web site. The image in the example is the restaurant logo
for the restaurant Ye-Ga Chon but the procedure for image uploading is the same for all
dynamic images on the site.

Figure 6.13 shows what the interface looks like before anything has been done.

56 Chapter 6. Results

Figure 6.13: The CMS interface for the navigation frame.

Figure 6.14 shows what it will look like when the administrator has moved the cursor over
the image. The image fades out a bit and a tool tip appears with the text “PNG, 185x85
pixels”. The tool tip contains all the information needed for creating and uploading a new
image in the location. The file format in this example should be PNG, and the image should
have the size dimensions 185 pixels by 85 pixels to fit in the spot. In other locations on
the page where image uploading is possible, the necessary information for the image to be
uploaded is shown in the tool tip, just as in this example.

Figure 6.14: The administrator has moved the cursor over the image.

In Figure 6.15, the administrator has clicked the image. Three buttons appear on the screen,
close to the picture, that say “choose file”, “cancel”, and “upload”. If he wants to upload an
image file, he should click the “choose file” button and select an image from his computer.

Figure 6.15: The administrator has clicked the image.

In Figure 6.16, an image called “logo cape-town.png” has been chosen from the computer.
It is important that the image to be uploaded conforms to the rules that were shown in the
tool tip. If the administrator tries to upload an image that does not correspond to the rules,
either it will not fit well into the spot or it will not be uploaded.

Figure 6.16: A new image has been chosen.

6.3. CMS Functions 57

In Figure 6.17 the user has pressed the upload button and the image upload function has
been activated. The image was successfully uploaded and refreshed to show on the page.

Figure 6.17: The new image has been successfully uploaded.

Whenever an image upload button has been pressed, a yellow status message notifies the
administrator that the image upload function has been activated. Since the image uploading
had to be dealt with through an iframe, the status messages for all image uploading results
are shown to the right in the frame for background picture options. In Figure 6.18 the
status message for a successfully uploaded restaurant logo image is shown to the right. The
message says that the previous image was removed and that a new image was uploaded
in its place. The four texts to the left in the frame are for uploading backgrounds for the
different sections of the framework for the web site. When clicking one of the texts, the
three buttons for uploading an image appears under the text. They work in the same way
as the buttons in the example above.

Figure 6.18: The administrator interface for background image uploading and image upload
status messages.

6.3.2 Text Editing

The second major part of the CMS is the text editing. In Figures 6.19 to 6.21 is an example
of how text editing in the CMS works.

Figure 6.19 shows how the address field for the restaurant Ye-Ga Chon looks like after it
has been selected by a mouse click by the administrator (the blue line that shows around
the text field look differently in different web browsers).

58 Chapter 6. Results

Figure 6.19: The text field has been selected.

In Figure 6.20 the administrator has typed the text “more text” after the telephone number
in the address. A pair of buttons appear, “cancel” and ”save”. If the cancel button is
pressed, the text in the field will revert to the text that was last saved. Pressing the save
button will save the text that is currently in the text field into the corresponding XML
document.

Figure 6.20: The administrator has written more text into the text field.

After pressing the save button, like shown in Figure 6.21, the two buttons will disappear
again, and a status message will appear for three seconds.

Figure 6.21: The administrator has pressed the save button and the text has been saved.

6.3.3 HTML Formatting Within Text Boxes

When text is written inside a text box in the CMS view, the formatting of the text when
viewed in the guest view will be as predefined in hardcode for each entry type. For example,
when normal text (without HTML tags) is written inside the headline entries on the Welcome
page it will become bold in the guest view. The implementation of the web site was done
this way since the CMS functions are supposed to be used by persons who are not used to
any type of programming, so knowing HTML text formatting should not be necessary. The
predefined formatting is not mandatory to use, though. If HTML tags are written within
the text boxes of the different entry types, they will format the text accordingly as they are
shown in the guest view. An example of this feature is shown in Figure 6.22.

6.3. CMS Functions 59

Figure 6.22: To the left in the image is an entry from the CMS view where HTML tags have
been written inside the text box. To the right in the image is the same entry from the guest
view. The text has been formatted by the HTML tags that were written in the CMS view.

6.3.4 Working with Entries

Since all pages of the web site are initially empty, except for the page title and the map
on the Location page, it is necessary to add different types of entries on the pages. In the
concept models, there was only one type of entry, the pair with a picture to the left and a
text to the right. In an early version of the implementation it was only possible to add that
type of entry. The width of the image was limited to a maximum width and a minimum
width in order to ensure that the pair would be balanced in size between the text and the
image. After trying to add a couple of entries with pairs it became obvious that it was
necessary to have more types of entries to get a more varying layout. Three new types of
entries were created to be used on the pages Welcome, The Restaurant, and Location. The
CMS functions for adding the entries are shown in Figure 6.23. The first entry type is the
headline, which is an entry with one line of text with a bold font. The second new type
of entry is the image entry with a centered image, and no text. The width of the image is
limited to a maximum width to fit the width of the page, but the height is free to choose for
the administrator. The third new entry type is the pair with a text to the left and image
to the right. The image in the pair has a minimum and maximum width.

Figure 6.23: The CMS functions for adding new entries on the pages Welcome, The Restau-
rant, and Location.

When adding entries and looking at them from the CMS, the size of the containers for the

60 Chapter 6. Results

entries are of constant height and width in order to get an organized CMS view. An example
of added entries of all four types can be seen in Figure 6.24. The First entry from the top
is the image entry, which consists of a single image. The second entry type is the headline,
consisting of one line of bold text. The third entry is a pair with a text to the left and image
to the right. The fourth entry at the bottom is the pair with an image to the left and a text
to the right.

Figure 6.24: All the four entry types from the CMS view.

6.3. CMS Functions 61

When the same page is shown from the guest view, it looks like in Figure 6.25. There are no
longer the thin frames from the CMS view around the entries (the thick black frame around
the images are inside the images), the editing functions are gone, and the images and texts
get their proper sizes.

Figure 6.25: The four entry types from the guest view.

The Menu page was implemented with the two entry types that were described in the
concept model in Chapter 5. The first type of entry is the headline, with a single line of
white bold text on a black background. The second type of entry is the dish entry, with all
the necessary information for one dish in a restaurant. The CMS functions for adding the
two entry types is shown in 6.26.

62 Chapter 6. Results

Figure 6.26: The CMS functions for adding new entries on the Menu page.

When adding the Menu page entries in the CMS view, it will look like in Figure 6.27. In
this example nothing has been written into the entries and no image was uploaded for the
dish. Upon adding a new entry, the fields are filled out with a standard text that explains
what to type in the fields.

Figure 6.27: The two entry types on the Menu page, from the CMS view.

One thing that is special for the menu entries is that they look exactly the same irrespective
of choice of language. This because they have texts in both languages. In Figure 6.28, with
three menu entries shown (a headline and two dishes) from the guest view, the first dish has
been provided with an image while the second dish has not.

Figure 6.28: Three entries from the guest view on the Menu page. A headline and two
dishes.

Chapter 7

Conclusions

This chapter summarizes the project and draws conclusions from the different parts of the
working process.

7.1 Working in South Korea

The plan for the project was defined with clearly separated and solid steps. Having the steps
for the different parts of the work process facilitated the work flow and took away confusion
about where to work and what was coming next in the project. Another advantage with a
well made plan was also that it described what was needed and what was needed to discuss
with involved stakeholders and how to properly document the different parts of the work.

The initial time plan for the project was sketched up quickly by evaluating the magnitude
of the steps of the process as well as based on my experience of how much time the different
parts of the work would take and how much time I thought I would need for logistical
matters. The decision to place a big part of the work in South Korea, close to the restaurants,
turned out to be beneficial for the project in several ways. An important advantage of
working in direct collaboration with the owner of the restaurants as well as being on location
was that it gave me the possibility to get a good picture of the restaurant business that I
was working for. It was also very practical to be there for the reason of taking photographies
and getting other materials for the pages of the web site.

Since only one of the persons related to the restaurants spoke English, I was depending
on her as my interpreter during all communication with the other people. Fortunately, she
was available most of the time during the work.

For me personally, an important reason to conduct the work in South Korea instead of
home in Sweden was to get the experience of living and working in a far away part of the
world and to get a glimpse of how different things could work in different countries. As
I did not know much about social structures or working conditions in South Korea before
my journey, I learned first hand about how big the differences between Sweden and South
Korea are.

7.2 Learning Process

Before the project, programming of Ajax functions was unfamiliar to me, and once I figured
out how to make the constituents work in symbiosis, it turned out to be an invaluable tool for

63

64 Chapter 7. Conclusions

implementing many useful types of functions. The work to program Ajax functions, while
following the usability aspects, went as intended and the results turned out very satisfactory.

Early in the project it became evident that it was a great help to have the usability
aspects as guidelines whenever new functions for different purposes were going to be imple-
mented for the web site.

7.3 Design and Implementation

Since there were no requests from the owners about the layout of the web site, it turned
out to be both interesting and challenging to have almost complete freedom in the design
process. The experiences from the theoretical study about Ajax and usability principles was
a great help during the development of the conceptual models.

In the first models, only one type of entry was planned for the different pages. When the
choice was made that different entry types should be implemented, it turned out to improve
the layout significantly. Apart from design details and small modifications in the layout,
the basic structure of the web site was maintained from the first models all the way to the
finished product.

When the first pages of the web site had been implemented, it became evident that the
XML tree structure used was not going to work for all different elements on the pages. A
big work started with adjusting the code and in the end the result was successful. All the
functions worked as supposed and not much code adjustments were needed.

An expected difficulty with the implementation was how to solve the encoding of text on
the pages since all text was going to be available in both English and Korean. Fortunately
the XML format turned out to be very good at handling different types of languages and
making it work with English and Korean was no problem at all.

7.4 Goals and Purposes

The purpose from my view, to carry out an international project and learn more about web
site design, was well achieved during the work. It was a great journey from first getting the
idea for the project to actually seeing how the finished product turned out. In the end, I
believe that the finished product became just as good as I had hoped from the beginning,
if not better.

The company’s goal to spread information about the restaurant to an international au-
dience on the web has not yet been fulfilled, but it is planned that the web site soon will be
made available on a Korean web server and exposed on the Internet.

The requirements for the web site were made to be on a reasonable level for the scope of the
project and the ones that did not get realized were pushed aside since the web site turned
out to be implemented for all three restaurants, and not just Ye-Ga as initially proposed.

7.5 Limitations

An important limitation to be aware of is that the current CMS interface for the web site
works best in the web browser Apple Safari. Some of the functions may not work as wanted
in other web browsers. This limitation was not seen as serious since the browser Safari is

7.6. Future work 65

possible to download and use for free for both Mac and PC.

The XML element structure for textual data on the web site was designed to be processed
quite fast with the different algorithms, but as compromises with the structure had to be
made during the implementation, the algorithm tended to become a bit slow. The speed
issue mainly concerns working with entries on the different pages.

7.6 Future work

Future work could include implementing some of the requirements that were discarded when
it was decided to develop the web site for all three restaurants instead of just one, such as a
function for PDF generation of the menu and a function for seasonal, automatic, updating
of the images and texts on the pages depending on the time of year.

At the time of writing, the web pages have not yet been officially published in South Korea
nor put up on a Korean web server. This will be done in a near future, in agreement with
the owners of the restaurants. At the time of publishing, it is also planned to optimize the
web site for search engines and online tourist guides.

A desirable future work would be to improve the implementation of the CMS to make it
function properly under more web browsers than only Apple Safari.

66 Chapter 7. Conclusions

Chapter 8

Acknowledgements

I would like to begin by thanking H̊akan Gulliksson, my internal supervisor at Ume̊a Uni-
versity, for all helpful feedback and supervision during the project. Thanks also to Per
Lindström, examiner for this project. Special thanks to the owners of the restaurants,
Kumeyoung Ye and Eunjun Han, and their family for all support and help during the
project while I was in South Korea. Thanks to my girlfriend Hanui Ye for her invaluable
help with everything related to our time in South Korea, and especially for her assistance as
interpreter during all communication with the people there. Finally I would like to thank
my father, Åke Boketoft, for being helpful and supportive during all the different stages of
the project and not the least for helping me stay on track with my work through the whole
journey.

67

68 Chapter 8. Acknowledgements

References

[1] Adobe. Flash content reaches 99% of internet viewers.
http://www.adobe.com/products/player census/flashplayer/, accessed 2009-01-04,
2010.

[2] AjaxPatterns.org. Predictive fetch. http://ajaxpatterns.org/Predictive Fetch, accessed
2009-09-13, 2010.

[3] Field Expert. Ajax best practices: Don’t break the back button.
http://www.fieldexpert.com/journal/2006/01/03/ajax-best-practices-dont-break-
back//, accessed 2009-09-05, 2010.

[4] Jason Farrell and George S. Nezlek. Rich internet applications the next stage of ap-
plication development. Proceedings of the ITI 2007 29th Int. Conf. on Information
Technology Interfaces, 2007.

[5] Jacek Furmankiewicz. Javafx script in action: Lacking for ria, promising for mobile.
http://www.devx.com/RichInternetApps/Article/35174, accessed 2009-09-11, 2010.

[6] Jesse James Garrett. Ajax: A new approach to web applications.
http://www.adaptivepath.com/ideas/essays/archives/000385.php, accessed 2009-
09-03, 2010.

[7] Gmail. Gmail. http://www.gmail.com/, accessed 2010-01-24, 2010.

[8] Google. Google maps. http://maps.google.com/, accessed 2010-01-24, 2010.

[9] jQuery for Designers. Ajax form validation example.
http://jqueryfordesigners.com/demo/ajax-validation.php, accessed 2009-09-13, 2010.

[10] Soren Lauesen. Software Requirements - Styles and Techniques. Addison-Wesley, 2002.

[11] Tim Berners Lee. Re: status. re: X11 browser for www.
http://lists.w3.org/Archives/Public/www-talk/1991SepOct/0003.html, accessed
2009-09-07, 2010.

[12] Antonio Lupetti. Nice ajax effect for message box using mootools.
http://woork.blogspot.com/2008/03/nice-ajax-effect-for-message-box-using.html,
accessed 2009-09-13, 2010.

[13] NetScript. Netscript whitepaper. http://netscript.com/site/loc/en/profile/
NetScript RIA WhitePaper.pdf, accessed 2009-09-03, 2010.

69

70 REFERENCES

[14] Jakob Nielsen. Flash: 99% bad. http://www.useit.com/alertbox/20001029.html, ac-
cessed 2009-09-11, 2010.

[15] Jakob Nielsen. Ten usability heuristics. http://www.useit.com/papers/heuristic/
heuristic list.html, accessed 2009-09-05, 2010.

[16] Jakob Nielsen. Why ajax sucks (most of the time).
http://www.usabilityviews.com/ajaxsucks.html, accessed 2009-09-14, 2010.

[17] Tim O’Reilly. What is web 2.0, design patterns and business models for the next
generation of software. http://oreilly.com/web2/archive/what-is-web-20.html, accessed
2009-01-05, 2010.

[18] Linda Dailey Paulsson. Building rich internet applications with ajax. Computer, 10:14–
17, 2005.

[19] Bruce Tognazzini. First principles of interaction design.
http://www.asktog.com/basics/firstPrinciples.html, accessed 2009-09-07, 2010.

[20] W3Consortium. About w3c. http://www.w3.org/Consortium/, 2010.

[21] W3Consortium. Introduction to html 4. http://www.w3.org/TR/html401/intro/intro.html,
accessed 2009-09-05, 2010.

[22] W3Consortium. What is the document object model? http://www.w3.org/TR/DOM-
Level-2-Core/introduction.html, accessed 2009-09-05, 2010.

[23] W3Consortium. Xmlhttprequest, editor’s draft 24 december 2009.
http://dev.w3.org/2006/webapi/XMLHttpRequest/, accessed 2009-09-02, 2010.

[24] W3Schools. W3schools. http://www.w3schools.com/, accessed 2009-09-05, 2010.

[25] W3Schools. The xmlhttprequest. http://www.w3schools.com/ajax/ajax browsers.asp,
accessed 2009-09-05, 2010.

[26] Wikipedia. Adobe flash. http://en.wikipedia.org/wiki/Adobe Flash, accessed 2009-09-
11, 2010.

[27] Wikipedia. Javafx. http://en.wikipedia.org/wiki/JavaFX, accessed 2009-09-11, 2010.

[28] Wikipedia. Microsoft silverlight. http://en.wikipedia.org/wiki/Microsoft Silverlight,
accessed 2009-09-11, 2010.

[29] Nicholas C. Zakas. Make life easy with autocomplete textboxes.
http://articles.sitepoint.com/article/life-autocomplete-textboxes, accessed 2009-09-13,
2010.

Appendix A

Requirements document

1. Elicitation of Requirements

1.1 Brainstorming
Brainstorming was used in the beginning of elicitation to get some ideas started.

1.2 Interviews with customer
The following interviews have been held with the owner of the restaurants.

Interview September 17, 2009: During the first interview I proposed the structure of the
web site and what basic functions and contents that should be included in the web pages.
The customer expressed that he liked the ideas and that he thought that it was OK to start
the project.

Interview October 21, 2009: During the interview, the customer expressed the following
thoughts and requirements:
- There shall be web sites for all three restaurants.
- Serious photography of all essential meals in the restaurants shall be done.
- An introduction text to the web pages, personally written by the owner, shall be displayed
on the first page of the web sites.
- There shall be photos of the employees welcoming guests into the restaurants.

1.3 Looking at other web sites
Inspiration for functions and appearance have come from looking at other web sites.
www.fellini.se
www.tgifridays.com

2. Requirements Specification

R: There shall be web pages for all three restaurants Ye-Ga, Ye-Ga Chon, and Cape Town.

2.1 Feature requirements
R: There shall be a welcoming start page for each of the three restaurants, containing a
welcome message written by the owner.

71

72 Chapter A. Requirements document

R: There shall be a page with information about the restaurant, for each of the three restau-
rants.

R: There shall be a page with the restaurant’s menu, for each of the three restaurants.

R: There shall be a page with directions to the restaurant and pictures from the area sur-
rounding the restaurant, for each of the three restaurants.

R: All relevant contents on the web page shall be available in both Korean and English.

R: There shall be photos of the restaurant and pictures of the restaurants and staff welcom-
ing guests.

R: There shall be information about Korean food and dinner table manners.

R: There shall be photos of chosen meals and information about them.

R: The menu shall be printable through automatic PDF generation.

R: There shall be automatic appearance update according to season time of year.

2.2 Screens
The screens are the the same as the conceptual models in Chapter 5.

2.3 Quality Requirements
R: The web sites shall be built up on a modular foundation so that it will be possible to use
the same foundation for all three restaurants’ web sites.

R: The web sites shall be able to view from a guest interface and from an administrator
interface.

R: All content data on the web site shall be possible to update by an administrator via a
CMS in the administrator interface.

R: The CMS functions shall be implemented including Ajax technology, where useful.

R: All restaurant-specific data shall be stored in XML files.

R: All aesthetic layout formatting settings for the web page shall be read from a CSS file.

R: The change between languages shall be done by clicking a flag.

R: The web site shall work in browsers where Ajax functionality is available.

R: The web page shall be made available in search engines, tourist guides, etc.

2.4 Usability requirements
R: Usability principles and heuristics shall be in focus when when designing the guest inter-

73

face and the administrator interface for the web site.

R: The administrator interface shall be as similar to the guest interface as possible, in ap-
pearance.

R: The CMS functions in the administrator interface shall appear as a layer of functionality
for updating the contents, on top of the guest interface.

R: Textual contents of the web site shall be kept to a minimum to keep maintenance and
user input load low.

2.5 Security requirements
R: The CMS will be password protected.

R: There shall be guests, who see the guest interface, and an administrator, who see the
CMS interface.

74 Chapter A. Requirements document

Appendix B

Time Plan

Before 22 September 2009
- Project inception: Initiate the development of the product. Stakeholders and goals are
identified.
- Elicitation: Define development goals together with the stakeholders. Commence elicita-
tion of requirements.

22 September
- Theoretical study

18 October
- Elicitation: Continue the elicitation of requirements
- Writing the requirements: Write down and finalize the requirements.
- Checking and validation: Check and validate the requirements.

26 October
- Design and programming : Develpment of the product, according to the requirements doc-
ument.
- Continuous report writing

5 December
- Acceptance test and delivery : The product is installed and tested by the customer and
developer to confirm that it satisfies the goals and works as described in the requirements.
- Move back to Sweden

11 January 2010
- Report writing
- Prepare for presentation

22 February
- Report done

After 22 February
- Have presentation and opposition

75

